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PREFACE 

This report constitutes the final report of Air Force contract 

F40600-82-C-0005, Study of Asymptotic Theory of Transonic Wind Tunnel 

Wall Interference. This effort was conducted under the sponsorship of 
Arnold Engineering Development Center, (AEDC), Air Force Systems 
Command (AFSC), Arnold Air Force Station, Tennessee 37389. Dr. Keith 

Kushman was the AEDC technical representative for the contract. The 
manuscript was sumbitted for publication on May 8, 1984. The 
reproducibles used in the reproduction of this report were supplied by 

the authors. 
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1.0 INTRODUCTION 

The problem of obtaining free-field transonic characteristics of wind 

tunnel models will continue to be of central importance to aeronautical 

technology for the indefinite future. Although the wind tunnel interference 

problem has received considerable attention at subsonic speeds, and a number 

of classical theories have been developed, e.go, Refs. I-3, there is room 

for progress even in this linear regime, as exemplified by the recent efforts 

of Kraft 4, who devised an ingenious procedure based on Cauchy's integral 

formula for two-dimensional flow over confined airfoils. This method has 

been extended to the three-dimensional flow by Sickles and Kraft in Ref. 5. 

Among its advantages, in contrast to the older concepts, is that by measurement 

of two flow variables it eliminates the need for both knowledge of the wall 

characteristics and analytical synthesis of the model. Presently, effort is 

underway to extend this procedure to nonlinear transonic flows. 

In connection with the transonic regime, other procedures have been 

developed which possess attractive features. One, which is of great interest, 

is a scheme that has been developed by Muman. This "post test assessment 

method", which has been implemented in two dimensions in Refo 6, is similar 

in some respects to an approach developed earlier by Kemp 7, and assumes a 

knowledge of the experimental pressures on the model and walls. It uses 

modern computational and optimization procedures to determine whether the 

tunnel Mach number and model angle of attack are correctable in the sense 

that almost free-field model pressures can be obtained at practically altered 

values of these parameters. For this purpose, an inverse problem needs to 

be solved. In three dimensions, surface pressures over the model are generally 

not available, and efforts are currently underway to modify the method 

toward the use of less information regarding the model near field. Examples 

of schemes of this kind are given in Refs. 5, 8, and 9. If this goal can 

be achieved, this process will be of value, including treatment of cases in 

which the walls are relatively close to the model. In spite of the potential 

utility of this method, there is a need for approaches that can reduce the 
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number of input parameters necessary to compute the correction, shed l ight on 

the physics of the wall interference phenomena, simplify the necessary compu- 

tations, and be generalized to three dimensions, as well as unsteady flows. 

Asymptotic procedures provide such advantages. Furthermore, they can provide 

valuable interactions with the other methods previously mentioned to suggest 

possible improvements as well as deriving beneficial features from them as 

well. For example, one concept presently being considered in the simpl i f i -  

cation of the Murman method of Ref. 6 for three-dimensional applications is 

unfolding a singular character of the near f ie ld rather than obtaining the 

model's shape from an inverse solution of a problem involving specified 

pressures based on measured values. In Ref. lO, an asymptotic procedure for 

two-dimensional transonic flow was developed. From this analysis, the singular 

character can be obtained from certain l imi t  processes. Moreover, nonlinear 

integral theorems as well as the asymptotic structure of nonlinear integral 

equations arising in the matching scheme occurring in the asymptotic analysis 

could be of use in the procedure of Refs. 4 and 5. 

Other potential applications of the asymptotic theory involve adaptive 

wind tunnels. An example of one configuration is described in Ref. l l .  

The analysis given herein wi l l  be oriented toward the three-dimensional 

generalization of asymptotic solutions developed for the two-dimensional case 

in Ref. lO. The lat ter represent the application of perturbation theory to 

the solid wall interference problem at transonic speeds. Whereas many of the 

previous methods can handle arbitrary wall to model dimension ratios, h, the 

perturbation procedure assumes h to be large. This approximation is useful 

for many practical cases in which i t  is desired to minimize the wall inter- 

ference. Furthermore, even for situations where h is not so large, the 

expansions appear to have extended val idi ty. 

A previous analysis along these lines was conducted by Chan 12, who 

treated the two-dimensional porous wall case based on asymptotic developments 

similar to those given for transonic l i f t i ng  line theory in Ref. 13. Because 

of i ts interest inconnection with compliant boundary applications and the 

fact that the Chan solutions apparently do not subsume i t ,  we have analyzed 

the solid wall case. By contrast to the method of Ref. 12, we employ 

6 
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"intermediate variables" to match the model near and far fields. Although 

sl ight ly more cumbersome than the approach uti l ized by Van Dyke 14, i t  pro- 

vides a reliable means of ensuring that al l  the proper terms are included 

in both representations. 
In addition, numerical solutions have been obtained for this theory, 

as typified in Ref. lO, to give some insight into the nature and magnitude of 

the interference effects. The work of Ref. 12 in this sense was s t r i c t l y  

formulational, with no computational application or quantification of the 

interference given. 

This report provides three-dimensional generalizations of the two- 

dimensional theory of Ref. lO. The development of these models was conducted 

under Air Force Contract F40600-82-C0005 and monitored at Arnold Engineering 

Development Center. The program consisted of the following two tasks: 

Task I. Asymptotic procedures wi l l  be considered for two l imit ing 

cases: slender~onfigurations representative of fighter aircraft ,  

and high aspect ratio configurations representative of transports. 

The feasib i l i ty  and general approach of applying asymptotic theory 

to these cases wi l l  be determined. 

Task 2. Based on the results of Task l and following consultation 

with the sponsor of the work, either the slender or high aspect ratio 

case wi l l  be selected for development of the theory for assessment/ 

correction of wall interference for three-dimensional transonic flow. 

On th~ basis of Task l ,  the low aspect ratio received emphasis in this program. 

Within this framework, the case of a slender fighter vehicle confined within 

cylindrical wind tunnel walls was treated. The corresponding theory described 

herein provides the formulation of a numerical problem whose solution* gives 

the wall-induced interference correction. Although the results apply to 

sting-mounted models confined by cylindrical solid walls, they can be readily 

extended to other support arrangements and wall cross sections. These 

*To be obtained in future contract effort. 
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generalizations s impl i fy  the numerical work required for the assessment/correction 

as compared to purely computational schemes. Porous and s lot ted,  as well as 

other boundary conditions such as a specif ied pressure d is t r ibu t ion  on a control 

surface for interference assessment, and adaptive applications can also be 

handled. The theory applies to the s i tuat ion when the character is t ic  lateral  

dimension of the model is small compared to i t s  length, and the tunnel height 

is inversely proportional to this lateral  dimension. To be provided in this 

report is in fomat ion From the theory on the forces and pressures associated 

with the interference. 
In another phase of the e f f o r t ,  progress has been made in the development 

of a comparable model for confined high aspect ra t io  shapes. Basic ideas have 

been worked out which represent a generalization of transonic l i f t i n g  l ine 

theory. Means have been ident i f ied which w i l l  be helpful in matching the 

vortex sheet far f i e l d  representation consisting of a l i f t i n g  l ine ref lected 

in the walls with the nonlinear almost two-dimensional near Field. These 

developments w i l l  be summarized in what fol lows. On the basis of this e f f o r t ,  

recommendations for future study w i l l  be made. 
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2.0 ANALYSES 

2.1 CONFINED SLENDER CONFIGURATIONS 

2. l . l  Overview and Roadmap 

In what follows, a slender confined airplane model shown schematically 

in Fig. 1 wi l l  be considered. The flow structure consists of three zones 

in which different approximations for the perturbation potential apply. 

These regions are indicated in Fig. 2. Near the axis of symmetry of an 

equivalent body of revolution having the same streamwise distribution of 

cross-sectional area as the complete airplane (axis layer), lateral gradients 

dominate. In a "central layer", i f  ~, the angle of attack, and the charac- 

ter ist ic thickness, 6, are such that ~/6 = O(1), as ~ + O, the flow is 

nearly'axisymetric and can be characterized as a nonlinear line source. 

Asymptotic representations for the central and axis layers exist in which 

the f i r s t  order terms are those associated with the unconfined flow. The 

9 

/ 
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Fig.  1 Slender vehicle confined inside cylindrical wind 
tunnel walls indicating Cartesian, cylindrical, and 
spherical polar coordinates used in analysis. 
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MODEL~ 

f "  h6 
r=  O(H), H = '~ ' - ,  

c 

0(6 "1 ) 

AXIS REGI( 

CENTRAL 
REGION 

WALL REGION 

WIND TUNNEL WALLS 

Fig. 2 Front view of wind tunnel model confined by cylindrical 
walls, showing regions of applicabil i ty of asymptotic 
expansions. 

second order corrections of these regions are due to the wall effects. A third 

region denoted as the wall layer can be identified, where the assumption of 

small wall perturbations is invalid. Here, other simplifications apply which 

represent the slender airplane as a multipole reflected in the walls. 

• he effect of the walls on the flow field is deduced by solving the 

second order problem for the central layer. ~his consiste of the equation 

of motionj hereinafter referred to as the "variational equation" subject 

to boundary conditions devised from matching the wall and axis ~ayers. 

10 



AEDC-TR-84-8 

Besides furnishing boundary conditions, the matching process is used to 

determine unknown elements appearing in each of the representations for the 

various layers. I t  consists of comparing these representations in a common 

region to two of them. 

In what follows, details of the matching process wi l l  be provided. 

Once the asymptotic form of the solution is determined, i t  w i l l  be used to 

evaluate the influence of the walls on the pressures and forces on the 

confined body. 

2.1.2 Mathematical Details 

Karman-Guderley Approximation 

The flow over a slender airplane wind tunnel model shown in Fig. l is 

considered in which the surface of the test art ic le is given by 

r : (SF(x,e) , (1) 

in cylindrical coordinates. In the notation of Fig. l ,  normalized coordinates, 

x = R (z) 
, r = ~ ,  

(in which c is a characteristic body length) are introduced, and the bars 

signify dimensional quantities. 

The Karman-Guderley (KG) representation of the velocity potential in 

small disturbance theory is given by the following asymptotic expansion: 

~-= R + ~2¢(x,~,B;K,H,A) + *.. , 
U 

which is an approximate representation of ¢ in the KG l im i t ,  

1 -M'= 
x , F  = ( S r , e  , K -  cS 2 , H - h(S A = a c ' ~ fixed , as ~ ÷ 0 . 

(3) 

(4) 

I I  
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Central Layer Expansion 

Within the KG l imi t ,  secondary l imits involving H ÷ ~ can be considered*. 

For slender airplane models confined by wind tunnel walls, various regions 

can be identified in which approximations for the perturbation potential ¢ hold. 

These approximations are expressed as asymptotic expansions. In the central 

region depicted in Fig. 2 (away from the R axis and the walls), the perturba- 

tion potential ¢ is almost axisymmetric and has the representation 

¢ = ¢o(X,F) + ~i(H)¢~ + ~l(H)¢l + . . .  (Sa) 

which holds in the central region l imi t  

x,F fixed as H + ® , (5b) 

where the quantity ~(H)¢½ is a "switchback" term inserted for matching. 

For purposes of studying the possibi l i ty of obtaining interference-free 

conditions, the KG similar i ty parameters K and A can also be expressed in 

the perturbation forms 

K = K 0 + ~I(H)K 1 + .- .  (5c) 

A = A 0 + ~l(H)Al + . - . .  (5d) 

In (5a), (5c), and (5d), the flow quantities are small perturbations about 

their free f ie ld (subscript O) values consistent with H + - .  In what follows, 

only (5c) wi l l  be considered to obtain values of K l for interference-free 

loading on the model. 

*The approximation scheme contrasts with another one which is embedded in a 
f u l l  potential framework under development by the authors. 

12 
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On substitution into the KG equations and retaining like order terms, 
(Sa) and (5c) lead to the following equations for the secondary approximations 

¢0' ¢~' and ¢I: 

[Ko-(Y+l)¢Ox]$Oxx + I-(F¢OF) = 0 
r F 

(6a) 

1- ):o (,+~lOOx *,x (~*°xx°,x ÷ ~ (%~ (6b) 

[ KO'(Y+l)¢Ox]¢Ixx" (Y+l)¢Ix¢Oxx + l - (  F¢IF F) =-Kl¢Oxx ' (6c) 

The forcing term in (6c) is necessary to achieve interference-free flow 
conditions• Its retention requires that 

Vl(H) : ~l(H) . (7)  

For matching, a procedure described in Appendix A based on Green's theorem 
gives a far field representation for ¢0 for a "ray" limit in which 

R_ = ~x 2 + Kor2 ~= , ~ = cos "I RX fixed , (Ba) 

where 

D • (8b) 

From this process, the far field representation is 

13 
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¢0 = 
'0 Bo ~o (co,,,,,+~ co~o)÷ A 0C~,, ~i (9a) 

where Pn(COS~) is a Legendre polynomial and 

AO : .  ~S(1) , 4xBo = -S(1)  + S(x)dx + 
J-® ~0 VX 

CO = S 2(1){Y+l) 
- -  16~2K 0 

(gb) 

S(x) =½~02WF=dO . (9c) 

The constant A has not been determined and wi l l  not require an evaluation in 
what follows. 

Wall Layer Expansion 

The central region expansions (Sa), (5c), and (Sd) are nonuniformly valid 

at the walls. This is associated with the idea that the wall induced 

perturbations are no longer small in that domain. Instead, the appropriate 

representation is: 

¢ = ¢o(H)¢o(Xt,r#) + ¢l(H)~l(xt,r t)  + . . .  (lO) 

which is valid in the wall layer l imi t  

x t = ~ r t = ~ fixed as H ÷® 
H ' H ' 

14 
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By the substitution procedure previously described, the wall layer approximation 
can be shown to satisfy the following hierarchy: 

+ FT "%, + (lla) 

l (rt@Irt) --Kl@Ox+x+ + (T+l)@Ox+~POx+x,+ KO~ix+x + + ~ r i 
(llb) 

and 

@@4Br_~ [ =0 , i=l ,2, . . ,  . (l Ic) 

I rt=l 

Integral Representation for ~0 

If  S(I) ~ O, as for the case of a sting support rather than a magnetic 
suspension*, @0 must behave as a reflected source near the origin R t=O in 
order to match with the dominant term of ¢0 given in (9a). From Appendix B, 
the appropriate solution with this property can be derived to be 

- S(1) IXt ' 1 ~o ~ ~sgnX'÷.  , (12a) 

where 

X t = xt/v/-~-~ (12b) 

M = Mo÷M l (12c) 

*This analysis can be extended to treat the magnetic suspension case. 

15 
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l SO® M 0 = . Zv ~ cos kX#Ko(krt)dk (12d) 

1So=cOs kx'l't 1 
Kl (k) Io(krt) 1 

2wl I {k) dk , (12e) 

and I n and K n are modified Bessel functions of order n. 

~0 As3nnptotics for Small R t 

For matching, the behavior of@ 0 for R t =R/H ÷ O, ~ fixed, is needed. 
In this connection, the representations (12d) and (12e) can be expanded near 
the origin by Taylor's theorem or another method involving differentiation 
with respect to r t and X # described in Appendix C. This process gives 

@0 - ~S(1) _ l__]__+4vR, aO + bOR@ Pz(c°s=) + "'" (13a) 

where* 

= kaKl k) 
bo_ l dk (13c) 

4~,2 Ii(k) 

The integrals in (13b) and (13c) are convergent, can be evaluated once and 
for a l l  numerically, and are independent of X + and r t ,  

*Similar quadratic growth to the R t= term occurs in the two-dimensional case. 

L6 
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Matching of Central and Wall Layers 

An intermediate variable and l imit  are introduced such that 

R = m fixed as H ÷ = Rn ~ ' (14) 

Here, n(H) is of an order between unity and H. This property is expressed 

symbolically as 

1 << n(H) << H . (is) 

The central region representation for ¢ in the intermediate l imit  (14) is 

Ao Co I / 

® ® ® 

+ 0 I.~nnRn.~ 
\n~Rn-~ ~ + ~½(H)¢~ + I~I(H)¢I(Rn,~) 

® ® ® 

(16) 

where 

AO = Ao/V~o , BO = Bo/v/~o , C 0 =Co/v~o • 

The central and wall layer representations for ¢ have an "overlap" domain of 

common va l i d i t y  as can be demonstrated by wr i t ing the wall layer representation 

in the intermediate l i m i t  (14). This gives 
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S{l) I 1 ~= ~°(H) ~o " 4~ ~-R 

© ® 

© 

n 2 
+ ao + bo ~-- ~ 

® ® 
(17) 

where an additional switchback term Q has been inserted in (lO) to 

match @ . Upon identifying common terms, denoted below by ~, matching 
demands that the following identities hold: 

c o = I/H (18a) 

i s(1) 
AO= "T~V~ ° (18b) 

el (H)  = I /H 3 

@l = R÷'3 ICo (c°s3~ + ~ cos=) 
t 

A I 4Trbo 
+ ~ P2(~°s=) " ~oo A_ 

(19a) 

as R t ~ 0 . (19b) 

Equation (19b) is consistent with the fact that the terms on the right hand 

side are solutions of (l lb) which is to dominant order identical in form 

to (6c). These terms are particular and homogeneous solutions identified 

in (ga). For @l' the homogeneous solution can be obtained from differentiation 
with respect to X of the switchback term@½ and adjusting the quadrupole 

strength for matching. The quantitY@½ itsel f  is obtained from differentiation 
Of~o with respect to X. I t  satisfies an equation identical to ( l la) and 
can be shown to be = B 0 cos~ IR @-= + 8WboRt I as R t ÷ O. 
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0-® 
~I(H) = I/H 3 

[ S ( l ) 4~A 
¢I = bo L~O0 R2P2(c°s~) + 8~BoR cosm- ~00 

(20a) 

as R + :o . (20b) 

In the formulation of the numerical problem for ¢I '  the last term in (20b) 

wi l l  be neglected in the far f ie ld specification. 

~½ : l lH (21a) 

¢½ : a~ - S(1) ao , (21b) 

noting that (6b) is identically satisfied by the constant a~. 

Axis Layer Expansion 

The third region of importance is a zone near the x axis shown in 

Fig. 2 and denoted as the axis layer. In this region, as in the unconfined 

case, cross flow gradients dominate. This is related to the fact that the 

scale of the r gradients in this domain is ~. The asymptotic representation 

for the velocity potential is 

= R + c[2(62~n~)~*(x) + ~2¢*(x,r*,B,K,H,A) + . . , ]  U (22a) 

which is valid in the axis l imi t  

r* = r/6,K,H,A fixed as ~ ÷ 0 . (22b) 

Here, r and e are cylindrical coordinates shown in Fig. 2. 
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As a representation of the wall effects, the perturbation potential, ¢*, has 
the development 

¢* = ¢B + T½(H)¢~ * TI(H)¢~ * . . .  (23a) 

which holds in the l imit 

r*,K,A f ixed as 6 ÷ O, H + = independently . (23b) 

In (23a), the quant i ty  involving T~ is a switchback tem inserted to match 

with i ts  counterpart involving p½ in (5a). 

Problems for  ~ ,  ¢~, and ¢~ 

On subst i tu t ion of (23a) into exact equations and boundary condit ions, 

the boundary value problems sat is f ied by ¢~, ¢~, and ¢~ in (23a) can be 

detemined. 

For ¢~, 

- r *  \ 
1 ~2¢~ 

r*  = BB = 
- 0 (24a) 

holds in the region external to the cross flow boundary B= 0 shown in Fig. 3. 

This boundary is the project ion of the model shown in Fig. 1 in a plane 

perpendicular to the free stream. Equation (24) is solved subject to the 

flow tangency condit ion on the boundary. 

~¢~ _ FFx 

~'n-B F = + F~ 
(24b) 

where n s ign i f ies  d i f f e ren t ia t i on  in the nomal d i rect ion to the surface 

B = r* - F(x,e)= O, and B s ign i f ies  evaluation of th is der ivat ive on the surface. 
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n 

y* 

r o 

Z*  

B = r *  - F ( x , O )  = 0  

Fig. 3 Cross flow plane geometry. 

On the basis of Gauss' divergence theorem and (24b), 

S' (x_)_ zn r* r* CB -- - - ~  as - , -  , , ,  
(24) 

The problems for the other quantities are 

~ % -  A, l = o (25a) 

~IB- ~IB o. 
(25b) 

By matching considerations, it is anticipated that 

% , l  < ® as r *  ÷ ® (25c) 
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Solutions for Axis Layer Approximations 

On the basis of Eqs. (24) and (25), the following multipole representations 

hold: 

CB_ S'(x) ~,nr* +g~(O)(x) + ~ g~(O)(x)c°s ne (26a) 
n=l r *n 

¢~ - constant = C l (26b) 

- gB (1)(x) ' (26c) 

where without loss of generalization, lateral symmetry has been assumed in 

the sense that F(x,B) = F(x,-e). 

Matchin 9 of Axis and Central Layers 

Following a procedure similar to that employed in the subsection relevant 

to Central-Wall Layer matching, a suitable intermediate variable is introduced. 

For the overlap domain of common validity of the axis and central layers, this 

variable is assumed to be 

r (27) 
r E = 

where 

<< {(6)  << 6- I  . (28) 

The axis layer representation for ~ written in intermediate variables is then 
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f - -  - 

$--= x + 2(6'  £nd;)5~'*(x)+ ~'/1~.~,-~ -~n~/ 
U ( L  J 

® ® ®  
"':B" .l, ,,x,+ "-]l 

# , *  -= S ' ( X ) / 2 1 T  . 

~*(x) * gB(O)(x) 

® 
(29) 

For the central layer, the corresponding representation is 

; °  x +,  

©@ 
+ gO(x) + +~ -g l ( x )  + . . .  

@ ® ® 

(30) 

On the basis of (29) and (30), the following matchings apply: 

@+~*@ 
S'(x) =~(x) ,~*(x)  = T (31) 

Already matched. 

g~(°)(x) = go(x) (32) 
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T~ = I/H " ( 33a )  

C = a~ 

~1 = I/H3 

(33b) 

(34) 

gB(1) = gl(x) . (35) 

This completes the matching process. 

Summary of Representations for Potentials in Various Regions 

Collecting the previous results, the asymptotic expansions for the 
velocity potential in the Axis, Central, and Wall layers are 

Axis Layer 

+ + + +  _ +  ... 1 
~-= x + ~- (x) + += gl (x)  

H 3 

r* = r /6 

(36) 

Central Layer 

= x + a = , o ( X , F )  + + 7  *1 ( x ' F )  + " ' "  U (37) 

r=  6r 
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Wal I Layer 

¢_ I I  xi- 1 1 ~ol(X.+,rt) + . . .  l 
- x + ~= ~o ( ,rt) '+ ~T~(xt,r t) +~T 

x t = x_ r t = 
H ' H '  

(38) 

S(1) ~0®I I  K1(k) dk. 

Associated with obtaining interference-free loadings, the KG similarity 
parameter has the expansion 

l K: ~ +;TKI + . . .  
(39) 

Interference Pressure Distribution on the Model 

On the basis of Ref. 15, the pressure distribution CPB on the model is 

CP B 
62 

j + .2 ,2 
(S' ~n6)S"(x) - 2¢ I B VB + w~ (40) 

where 

v~ = r*=~ ' ''~ = ~ ~ ° l r * = F  B r*=F 

Substituting (36) in (40), this pRssure can be written as 

CP B 
m ~z 1 (6z 9,,na)S"(x)- 2t¢~xJ + g~B H --i--'(x) + t ~--~-/ 

B B 
(41) 
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Hence, the wall interference effect on the surface pressures denoted as 

ACp is independent of B and is given by 

ACp - 26= 
H 3 gi(x) . (42) 

From (41) and (42), the loading on the model is constant in each streamwise 

plane x= constant. Accordingly, the walls induce no l i f t  perturbation on 

the model. Only a drag perturbation occurs. This is considered in the 

next section. 

Tunnel-Wall Interference Drag 

The drag D of the wind-tunnel model can be computed by applying the 

analysis of Ref. 15, which was performed for unconfined flows. Therein, 

D is computed from a momentum flux in the x direction across the boundaries 

of a cylindrical control surface. The curved boundaries of this surface 

coincide with those of the Axis Layer. From this procedure, D in an 

unconfined flow is given as 

- - O + 6"9.,n6 2'n',,9~(1) = 6" ~ ( 1 ) g ( 1 )  ~- 1 ,F,B)FFx(1 ,B)dB 2q 

- 2"n" @'(x)g'  (x)dx . 

Tn (43) ,  

g(x)= I 

(43) 

(44) 

q = dynamic pressure . 
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The wall induced perturbation to the drag AD is computed from the change in 

¢* due to the second and third order terms, using (43) whose structure is 

otherwise unaffected by the walls. The result is 

AD _ 2~w--j-I 
q H3 ')0 S'(x)g~(x)dx . (45) 

Since S is proportional to 6 .2 multiplied by the unscaled cross sectional 

area, the change in drag coefficient normalized to the product of the model 

frontal area and ~ , HAC D is proportional to ~2/H~. This quantity is in turn 

proportional to the blockage ratio, a r,  i .e . ,  82/h2. 

Determination of Interference-Free Conditions for Drag 

For a given model geometry or an a f f in i ty  of models, Eq. (45) can be 

written in the form 

HACD _ f(Ko,Ki,A,y ) 
a r 

(46) 

This relation is a similar i ty law in which H,a r are separated out of the 

universal variation given by f. The latter is determined solely from (45) 

through gl" To determine this quantity, the following boundary value 

problem (PI) needs to be solved for the previously given variational 

equation for ¢I" 
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PI: 

K - (Y+l)¢Ox]¢ix x - (y+l)¢Oxx¢ix (~ ) : . Kl¢Ox x F 
(6c) 

lim ¢I -  : 0 (47) 
F÷O r 

¢I = boR2P2(c°s~) + 8~boBoR cos~ , R ÷ ® (20b) 

S(1) ~0 ® k2Kl(k) 
b 6 - 4x2v/-~O ll{k) 

dk (13c') 

yo £yo 4'n'B 0 = - S(1) + S(x)dx + ~(y+l) dx F¢~x(X,F)dF 
• 

(9b) 

where ¢0 is the solution of (6a) subject to (ga) and 

.lim r¢oF = S'(x) for 0 < x < l and ¢0~ = 0 for x > l 
r÷O 

Once the problem P1 is solved, using computational methods such as successive 

line overrelaxation, the results can be applied to extrapolate to zero model 

size. In addition, for a fixed K O, A, and y, values of K l can be determined 

to achieve AC D = 0 for an interference-free drag simulation. This process is 
shown schematically in Fig. 4. This result applies to affinely related model 

geometries for a variety of fineness ratios, wall heights, and blockage ratios. 

2.2 CONFINED HIGH ASPECT RATIO CONFIGURATIONS 

2.2.1 Asymptotic Representations 

The point of departure is the transonic l i f t ing line theory of Ref. 13. 

This theoretical model treats the case of a high aspect ratio wing in a free 
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1 
KARMAN GUDERLEYSIMILARITY  PARAMETER K = K 0 + H3 K 1 + . . . .  

a r = BLOCKAGE RATIO 

AC D = PERTURBATION OF MODEL 
DRAG DUE TO WALLS AND 
STING 

INTERFERENCE 
FREE VALUE 

K I 

Fig. 4 Schematic of universal plot of interference drag 
coefficient versus similarity parameter perturbation. 

f ield. Referring to the wing geometry confined within the rectangular tunnel 

shown in Fig. 5, the free f ield wing theory applies in a l imi t  in which i f  

6 is a characteristic thickness ratio of a unit chord wing of span b, a 

transonically scaled aspect ratio parameter, B = 61/3b ÷ ®. This scaling 

is related to the transverse extent of the wave system which is 0(6 -I/3) in 

a Karman-Guderley (KG) l imit  involving 6 + 0 to be described. In what follows, 

i f  the width of the tunnel is 2h, limits are considered involving B and 
H = h 6 1 / 3 .  
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Fig. 5 High aspect ratio wing in rectangular cross section tunnel. 
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Karman-Guderley Limit 

The asymptotic expansion for the velocity potential $ is 

= x + 62/3@~x,~,~;K,A,H,B)" - " + . . .  
U 

(48a) 

which is valid in the KG l imi t  

l -M = 
ol/3y 6 - ~  x,~ = , ~ = 61/3z , K = , A = ~ fixed as 6 +0  . 

Substitution of this expansion into the exact equations and boundary 

conditions leads to the KG problem of transonic l i f t i ng  surface theory 

in which the equation of motion 

K - (y+l)¢x]¢x x + ¢~ + ¢~ = 0 

(48b) 

(49a) 

is to be solved subject to the wing and wall boundary conditions 

B¢ (x,O,_+,z) = ~ - A 
By Bx ' 

(4gb) 

(x,y,_+H) : ~ (x,_+BH,~) : 0 , 
@y az 

(49c) 

where the equation of the wing is 

y = 6Fu,~(x,~/B) - A , -B ~ z ~ B . 

In addition to (49b), the KG formulation also involves wake and far f ield 

conditions which wi l l  not be considered in this discussion. 
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Inner Region 

For the inner or near field region, the flow is almost two dimensional, 
with corrections due to the f inite aspect ratio and wind-tunnel walls• The 
asymptotic expansions expressing this structure are 

1 ~(x, .~ ,~)  = ¢o(X, .~;z* )  + ~. ¢1 (x, . , ; ;z*)  + . - .  (5Oa) 

1 
K =  KO + ~ - K  I + . . . .  ( 50b ) 

l 
A = A 0 +~A l + . - . .  (50c) 

The expansion (50a) applies in the limit 

= Z  H z* ~,x,~,~- = ]J fixed as 6 + 0, B ÷ ® independently 
D D 

(SOd) 

The equations for the approximate quantities associated with (50) are: 

+ = 0 (51a) [K 0 - (y+1)C0x]¢0x x ¢0~ 

[ - ] - (y+l)¢ l + = -  Kl¢ 0 (51b) K 0 (y+l)¢0x ¢ix x xC0xx ¢I~ xx 

which are to be solved subject to the boundary conditions 

Be01~ - ~ x  ~ (x,~/B)- A 0 , 
3~ly=O ! (52a) 

 -ly:o = " . 
(52b) 
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I t  is to be noted here that the essential interference problem involves 

the solution of (51b) which is the wall and aspect ratio correction to the 

(zero subscript) unconfined two-dimensional near field. 

To complete the formulation for the ¢I perturbations, a suitable far 

f ield is required. This comes from matching with the outer solution. To 

dominant order, this represents a bound line vortex shedding its vorticity 

downstream as an idealization of the wing. I f  K is sufficiently large, 

the far field is subsonic and is described by a three-dimensional form 

of the Prandtl-Glauert equation. In what follows, only this situation 

will be considered. As contrasted to the free-field case discussed in 

Ref. 13, the vortex sheet is reflected in the walls. 

Outer Expansion 

The asymptotic expansion exhibiting the anticipated far field flow 

features previously discussed is 

, - -  ÷ ( x , . y , . z * l  + + . . . ,  (53a) 

which is valid in the l imit 

x* =~ y* = ~ z* = -  ~ fixed as B ÷ =  . 
B ' B ' B 

The representation (53a) leads to the hierarchy of equations, 

KO~Ox.x * + + = 0 ~Oy.y. ~OOz.z. 

+~0 l +~01 =0 Ko~°l x'x* y'y* z'z* 

K0~Z + + = (Y+ I )~0  ~0 - K1V'0x.x. ' x'x* ~OZy*y * ~°2z*z* x* x'x* 

(53b) 

(S4a) 

(S4b) 

(S4c) 
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which are subject to the wall conditions, 

~o,1,2J = ~¢o,1,21 ' = o 
By* {y*=+-B~ az* z*=+_~ 

, U ~ H/B , ( 55 )  

and appropriate boundedness conditions at x* = ®, as well as matching with 

the far f ie ld of the inner solution as x*,y* + O. In what follows, results 

from our f i r s t  efforts to obtain this behavior are indicated. 

Investigations of Inner Limit of Outer Flow 

Using Green's theorem, the flow over the wing and i ts wake can be 

shown to be the superposition of a surface source, and doublet distribution 

as well as a nonlinear volume source. The doublet suitable for this 

representation satisfies the homogeneous Neumann conditions appropriate 

for the solid walls. I f  G is the potential of this doublet, dropping 

star superscripts, and introducing the variable X = x/V~o, 

AG = ~ ' ( y ) a C z - ; ) a ( x )  , ( 5 6 a )  

with 

= o .  
y=e~--v z=IJ 

(56b) 

Introducing the Fourier transform of G, i . e . ,  

_ 1 .(=e ikxG( v ~ J - =  x,~,z)dx , 

(56a) implies 

~y2 ~z2 
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2.2.2 Free Field Case 

Suppressing the Neumann conditions, (56b), the question of whether 
the formulation (56a) leads to the free field classical Prandtl l i f t ing 
line formulas has been answered. This is important in establishing a 
"datum" term in obtaining a correction to the free field. Denoting G = T 
for the free field solution, the appropriate solution satisfying (57) with 
the proper far field decay is 

@ I" Ko(kr')l = (2w)-3/2 kK~(kr')y = (2v)'3/2 B~ ~/y2 + (z.E)= 

where r" = ~y2+ (z-E) 2. From inversion and Green's theorem, noting that 

r=e' kXK 0 I (kr)dk - .v. 
" - =  ~/X = + r 2 ' 

the potential,~O0, 0 of a bound vortex shedding a sheet downstream with a 
shedding strength Y(E) is given by the relationship 

~00,0 = s_lldEI;d{Y(E)T(x,Y,Z;E,E) , (58) 

where 

T(x,y,z) - 
1 r=e-ikX kK~(kr')y dk 

(2/i.)2 |.,_= ~ / y 2  + (Z_E)2 " 
(59) 

Thus,  

S. I I 
I v 

~/ X;~+y=+(z-¢) 2 y=+(Z-E)= 
(60)  

35 



AEDC-TR-84-8 

which agrees with the Biot-Savart low speed expression for this vortex 
assemblage. 

2.2.3 Confined Case 

For f in i te  H, the appropriate expression for G solving the Stunn Liouvil le 
problem (57),(56b) is 

= ~ X n / ~  coshSn(¢-U)coshBn(Z+~) 
sin~nY n=1 V/-~6 n sinh6n~ 

(61) 

where 

Bn : ~/~n + k2 

)tn v 

(62) 

(63) 
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Asymptotic theories have been investigated for the treatment of 

transonic tunnel wall interference. Two limiting cases have been considered. 

The f i r s t  which was emphasized in this study involves low aspect ratio 

shapes where the characteristic lateral dimension of the model is small 

~' compared to its length, and the tunnel height is inversely proportional 

to this lateral dimension. Under these circumstances, key findings are: 

I. The wall correction for l i f t  is of higher order than the drag. 

This contrasts to the two-dimensional case described in Ref. lO 

of an a i r fo i l  between solid walls for which both corrections are 

of the same order. 

2. A similarity law has been derived for the correction of the drag 

coefficient. I t  implies that the change in this quantity (referred 

to the maximum cross sectional area) due to solid cylindrical wall 

interference is proportional to the quotient of the blockage ratio 

and the normalized wall height H. 

3. The theory which is applied to the case where the model far f ield 

is subsonic gives explicit results for the rate of decay of the 

model and wall perturbations of the free stream which are not 

readily accessible from purely computational correction/assessment 

simulations. Also, i t  allows extrapolations to zero model size 

to be made. 

4. On the basis of the theory, a perturbation in the Mach number and/or 

similarity parameter appearing in the theory can be determined to 

eliminate the tunnel wall perturbation to the drag. As in the l i f t  

correction for the two-dimensional case, a universal curve of drag 

interference-free perturbations to the free stream similarity 

parameters as a function of the latter can be plotted based on Item 2. 

This curve, which is a generalization of the transonic area rule, 

applies to aircraft of differing cross sectional shape variations 
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. 

in the streamwise direction but with the same longitudinal area 

progression. The blockage ratio and tunnel height are separated 

out in this universal variation. The result of universality is 

that i t  achieves major computer savings in assessment/correction 

evaluations. 

The interference pressure on the body depends only on the streamwise 

coordinate to dominant order. 

The second case considered involves large aspect ra t io  confined 

wings. I f  a is the wing thickness, b is a span dimension, and h is the 

tunnel height, both in units of the chord, a l i m i t  wi th in transonic small 

disturbance theory was studied for  which B = b61/3, H = h6 l / 3  + ®. This 

process leads to a general izat ion of l i f t i n g  l ine  theory considered in 

Ref. 13. The structure of the f low near the wing (inner solut ion) and 

that away from i t  (outer solut ion) has been characterized. Near the wing, 

i t  retains the two-dimensional character of the f r ee - f i e l d  case. In the 

far  f i e l d ,  i t  is the re f lec t ion  in the wal ls of a vortex assemblage 

consist ing of a bound vortex perpendicular to the f low shedding t r a i l i n g  

vort ices. The in tens i ty  of the l a t t e r  is proportional to the spanwise 

loading. The assemblage induces incidence corrections to the two-dimensional 

near f i e l d .  A part of th is e f fec t  is due to wall corrections not present 

in the f r ee - f i e l d  case. 
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I t  is recommended that the theory for slender bodies be extended in 

several ways. To treat magnetic support systems, Eq. (9a) can be suitably 

modified by discarding the dominant term AO/B. This change gives the 

appropriate far f ie ld doublet rather than-~ource behavior. Equations (12d) 

and (12e) by appropriate multiplication by k give associated differentiation 

of the reflected source to obtain the doublet. The same process previously 

discussed wi l l  furnish the asymptotic approximation of these integral 

representations near the origin, providing the far f ie ld in Problem Pl. 

To obtain the correction for pressure boundary conditions and other wall 

simulations, suitable Green's functions have to be employed in the Green's 

theorem leading to far f ield solutions such as (ga). Correspondingly, 

analogous results replacing Eqs. (12) can be obtained using transform 

methods and a convolution theorem. For the matching, al l  of the ideas 

presented herein for the solid wall, sting supported case wi l l  be applicable. 

In the case of rectangular walls, i f  B is fixed, i t  is anticipated that 

the reflections providing the far f ield in an analogous problem for Pl 

wi l l  involve e l l i p t i c  functions. 

The large aspect ratio analysis should be completed by determining 

the inner l imi t  of the outer solution. To obtain this behavior, an 

integral representation is required for the series (61). One relevant 

method considers this sum as a residue expansion of a contour integral. 

From this development, the procedures described herein for the low aspect 

ratio case can be applied. For the latter,  quantitative results should 

be obtained from a computational solution of the problem formulated in 

Eqs. (6c), (47), (2Oh), (13c'), and (gb). Other generalizations besides 

the ones described previously in this section involve the choked case, 

and the K ~ 0 l imi t .  These are of great practical interest and should 

also receive attention. The asymptotic methods employed in this report 

can be advantageously used to treat these situations. 

Once these areas have received attention, the combined computational 

and asymptotic theories should be applied to adaptive walls and incorporation 
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of viscous effects. Another interesting and important aspect concerns 

consideration of simplifications of the two variable methods of Refs. 4 

and 5 using the tools developed in this effort. 

On the basis of the foregoing discussion, the following is a summary 

l i s t  of recommended future follow-on areas to the effort described in 

this report: 

I .  Obtain computational solution for transonic slender configurations 

in circular cross section solid wall tunnels and apply to wind 

tunnel wall interference assessment and correction procedures. 

2. Complete high aspect ratio analysis and develop code. 

3. Extend analyses to porous, slotted, and pressure boundary conditions. 

4. Extend analyses to other wall cross sections. 

5. Treat choked case. 

6. Apply theory to adaptive walls. 

7. Treat viscous effects. 

8. Exploit asymptotic and other theoretical methodology to simplify 

the two-variable method of Refs. 4 and 5. 
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APPENDIX A 

FAR FIELD CALCULATION OF ¢0 

To determine the behavior of ¢0 for large R, Green's theorem is 

applied to the region shown in Fig. Al. For this purpose, (6a) is written 

in a "stretched" coordinate system involving the variable X defined in 

(Sb). This gives Poisson's equation, 

A¢ o : K~3/2(y+])¢Ox¢Ox x , (Al) 

where 

- ~ 2  

aX z 

V 1 

R== 

y 

n 

,R 

i ' = 8 t  

8, 

/ ~  S o (SHOCKS) 
I 

Se 

X 

Fig. A1 Region for  appl icat ion of Green's theorem. 
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In addition, a fundamental solution G is defined with the property that 

AG = ~(x-() 6 rn~pP ~(0-0") . (A2) 

Green's theorem applied to the region shown in Fig. Al can be written as 

'o "ol .::i,o - G dS OAG - GA OI dV, 
Ss+SG+S ® V l 

(A3) 

where n denotes differentiation in the direction of the outward normal to 

the region V I .  In (A3), the le f t  hand side represents an integration over 

the surfaces S c, Sa., and S®. The surface S c is a slender cylinder of 

radius F= ~ with the X axis as i ts axis of symmetry. The surface S is 
o 

the total area of the shocks, and S= is an in f in i te ly  large sphere. 

The right hand side of (A3) represents a volume integration over V l . 
On the basis of (A2), 

G _ 
l l, 

IT" d (x-{)=+F=- ZFp cos(e-e,) +p = 
(A4a) 

aG _ l p -  r cos(e-e') 
ap ~ " 

[(X_{)2 + F2 _ 2rp cos(e-e') + p213/2 • 
(A4b) 

For a sting support, i t  is anticipated that ¢0 wi l l  behave dominantly in 
l a subsonic far f ie ld l ike an unconfined source, i .e . ,  ¢0 = " ~ • From 

(A3) and this assumption, the contribution from S® is O(R " i )  as R + = 

and therefore vanishes. For the magnetic suspension case, the doublet 

behavior, ¢0 = O(R-=) is expected and again the contribution from S= 

vanishes. The integral on the shock surfaces S a also disappears. This 

can be demonstrated in the same manner as in the two-dimensional case by 
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integration by parts of the r ight hand side of (A3). Combination of 

boundary terms from the partial integration and the S O integral nu l l i f ies  

the shock contribution by the shock relations. 

Implementing this procedure, (A3) can be written as 

I l + I 2 = 13 + 14 + I o • (A5) 

where 

BG 
II = 0 ~ d S  

S 

(A6a) 

/j~ B¢O I Z = - ~ dS 

S¢ 
(A6b) 

13 =//j oASdV 
V 1 

(A6c) 

14 = - / / /GA¢odV 

V 1 

(A6d) 

la = " ¢0 ~-~- G ~ dS . 

S o 

(A6e) 

On the basis of anticipated matching with the Axis Layer as described in 

connection with (24c), 

¢0 = S'(--~ ~n F + g ( x )  as F ÷ O  . (A7) 
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BG Approximating G and ~ for p 

= O(E J~ne) as c ÷ 0 . 

In a similar manner, noting that S'(x) = 0 for x > l ,  

+ O, and use of (A7) gives 

c(-r cos(e-e')+ .-.)de' 
4~[(X-{) = + r 2 _ O(E)] 312 

(A8) 

1 F 1 S'({)d{ 1 ® 

12 = " I IT jO  ~R 2-2{R cos~+{2 = - ZF~ n=O 

Pn (c°s~) ~0 l 
Rn+ l  {ns ' ( { )d{  

from expanding the denominator in Legendre polynomials and termwise integration. 

On integration by parts and let t ing R ÷ ®, this becomes 

{ s: i i ;: ,coso  S(1) + S(1) - S({)d{ cosco + S(1)m2 {S({)d{ 
12 = ~ 4~R 2 4~R 3 

+ O(R -~ ) 

(A9) 

where the factor in the second braces representing the strength of the 

quadrupole contributes to the quantity A in (9a). 
m 

By (A2), (A6c) gives 

13 : @0." (AlO) 

From (Al), (A6d) becomes 

+I ¢ ¢ . 

0 V 1 

(Al l) 

Integrating (Al l) by parts, combining the boundary terms with those in I 

applying the shock relations, and collecting the results for I l ,  12, and 

13 gives the f i r s t  two terms of (ga). These are the f i r s t  two spherical 
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harmonic solutions of (AI), assuming the response to the nonlinear 

forcing term is negligible. The higher order terms include the response 

to this forcing term. For this purpose, the forcing term is evaluated 

for large R, from the dominant representation of ¢0' 

Accordingly, 

2A~ AoB 0 (6PIP3*P~). " "  , 
¢Ox¢Oxx - R s Pl(C°s=)P2(c°s=) R 6 (Al2) 

where from (ga), 

A 0 = A O / ~  0 , B 0 = Bo/K 0 , 

and Pn(COS=) is a Legendre polynomial of order n. The products of the 

Legendre polynomials can be expressed as a sum of them (Ref. Al). This 

fact faci l i tates the determination of the particular solutions. In 

particular, denoting u = cos=, 

3u 3 - u 3P3 + 2Pl 
Pl(U)P2 (u) = ~  - 5 " (Al3) 

To obtain the particular solutions, (Al) is written in spherical coordinates, 

and the method of separation of variables is used. Considering the response 

to a typical forcing term in (Al2), using (Al3), this gives 

R (s Pn (c°s=) ! in= - A¢O- ~, ~R "-~-)+R'sin,., "~'-/ ~ ' 

r qLAl~Gradshteyn, l.S. and Ryzhik, I.M., Tables of Integrals, Series and 
Products, Corrected and Enlarged Edition, Academic Press, New York, 
1980, Eq. (B915,5), p. 1026. 

47 



AEDC-TR-84-8 

in which 

¢0 = ~(R)T(=)  . (AI4) 

I f  T = Pn(COS~), 

, ~ =  R "~ 
6 -  n(n+l  ) • (Al5) 

The special case, n=2 in (AI5) leads to irrelevant logarithmic solutions. 

Others are of higher order and are indicated by the 0 symbol in (9a). These 

are unimportant for the matching discussion in this report. On the basis 

of this analysis, the forcing term response particular solution to the 
dominant source term of ¢0,¢~ p) is 

16~=Ko[x2 + K0~213/2 
(A16) 

and leads to (ga). 

In connection with this derivation, i t  should be noted that in iA8) 

the l i f t  effect is associated with a doublet term (not shown), ~ cosO'/c, 

that is in the bracketed factor in the integrand. This term is higher 

order in ~ in the l imit (4) as can be inferred from matching of the Axis 

and Central Layers. Therefore, i t  has been neglected in this analysis. 
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APPENDIX B 

DERIVATION OF DOMINANT APPROXIMATION FOR 
WALL LAYER ~0 GIVEN BY EQ. (12a) 

The singular behavior 

~0-S(I-~) I" l__l__+ ,. .} as R t 0 (BI) 
v/-~O 4=R@ ÷ ' 

R + = R/H , 

by virtue of the need to match with ¢0' is anticipated. Accordingly, (lla) 
can be rewritten as 

S(l___~) (S(X t) 6+(r '=) 
A~ 0 = V ~  0 2~r t= 

, (B2) 

~O °° where 6+(r)dr = I. 

solid walls is 

The appropriate boundary condition associated with 

~)~0 

rt=l 
= 0 .  (B3) 

Applying the divergence theorem to the region bounded by a cylinder 
consisting of the curved surfaces, rt=l, and the f lat faces X + ®, (B2) 
and (B3) imply that 

~o 0 = S(1)  X i" 2~" s g n  X i" . (B4) 
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To solve the boundary value problem embodied in (B2) and (B3), ~he 
exponential Fourier transform is used. For the purpose of obtaining . 
convergent integrals, the property (B4) is utilized to define a regularized 

version of ~0 denoted by M for which 

s(1) Ixt 1 '~o - ~ ~ sgn x + + M . (BS) 

Accordingly, 

A H = ) ~+(rt) . l--l~(X) " (B6) 
I 2~r + 

With the following exponential transform pair, 

)~ = /®e-ikXMd X (B7) 

M = ~f~eikXMdk , (B8) • 

the subsidiary equations for M become: 

rdrl d (rB_~d)~). k21~= ~ r  0+or) ,l . (Bg) 

The f i rs t  forcing term on dropping the daggers on r and X can be 
eliminated and replaced by the boundary condition 

dM l (BlO) lim r B-~= ~- ~ . 
r÷0 
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The other boundary condition is 

: d/4 I' = 0 . (Bl l )  
B-~j r=l 

The solution of the boundary value problem is 

2~I~(k) + ~ dk 
- . ®  ~k 2 

(BI2) 

where the effect of the last term regularizer in the braces eliminates the 

double pole at the origin. Since I~(z) = I f(z) has only pure imaginary simple 

zeroes, the appropriate inversion contour is a large semicircle with i ts base 

along the real axis. For Ik[ ÷ ®, the square bracket term is 

0/e 'J~Jr '~X~ 
" t ~  / , w h e r e  k=~+ iT .  Accordingly, the semicircle is in the upper 

/ 
half plane for X > 0, and in the lower for X < 0. The zeroes of I~ are at 

k=±i~ n, n=1,2, . . . .  Xn is the solution of the equation 

Jl(~n) = 0 . (Bl3) 

On summing the residues at the poles corresponding to these zeroes, we obtain 

-x Ixl 
l ~ e n Jo(Ln r) 

M : 2 . ,  
~n [Jo(~n)]2 n 

(BI4) 

where the Wronskian relation 

_ 2 

J-(~-)YA(~-)u . v " - Yo(~n)Jo(~n) ~Ln 
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and (B13) have been ut i l ized in (B14), which can also be derived by 
eigenfunction expansions. 

Equations (12c)-(12e) fol low from (B12) and the properties of the 

modified Bessel functions, upon restoring the daggers and noting that 
(Bg) admits solutions for positive and negative values of k. 
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APPENDIX C 

DERIVATION OF BEHAVIOR OF eO NEAR ORIGIN Rt=O GIVEN BY EQ. (13a) 

To obtain the required representation, (12d) and (12e) wi l l  be 

considered. Now, M 0 can be evaluated exactly from a table of Fourier 

transforms to give 

1 (CI) 
M 0 - 4~Rt " 

This is precisely the source behavior desired for matching. 

One candidate method of evaluating M l involves expansion of the 

integrand near the origin. This leads to divergent integrals. To avoid 

this d i f f i cu l ty ,  the derivatives of M l with respect to r '  and X' are 

considered using the same procedure. Accordingly, on dropping the daggers, 

~)M 1 
~r 

: k  cos kX Kl(k)I1 (kr)dk 2Ii(k) 

= _ r ~  l , (C2a) 

on expanding the trigonometric factor cos kX and integrating term by 

term with 

- -  / :  k=Kl(k) 
I I  = I l (k) dk . (CZb) 

Since the integrand of ~1 is bounded at the or ig in  and O{k=e " 2 k ) ' "  as k ÷ ®, 

i t  is evident that  I 1 converges. 
Moreover, 
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I 

BM l 

gg - - f O  ® So k sin kX dk - ~ d k  . (C3) 

Again, expanding the trigonometric factor and recognizing that the last 
integral is well known, and can be evaluated by Cauchy's theorem as 

@M l 
sgn X, is given as ~X- 

@M l 
BX 

- IT  - { ~  ~,,ox. (C4) 

Since 

_- I fo" M l (0,0) ~-T 
k 2 

Kl(k)I0(krt)' 1 
2if(k) d~( , (c5) 

which is i t s e l f  a convergent in tegral ,  u t i l i za t i on  of {C2), (C4), and (C5) 

with (12a) leads to (13). This resul t  could also have been obtained from 

a Taylor 's expansion of M 1 near the or ig in .  I t  is interest ing to note 

in this connection that the second term in (C4) leads to cancellation with 

the f i rs t  term in (12a) as R + + 0. 
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A 

A 
t 

A O,A 1 

A o 

a O 

a6 
a r 

B 

B O 

b 

b o 

b6 
C o 

C D 

AC D 

Cp 

C 

D 

F 

G 

g 

g~(n) 
gn (x) 

NOMENCLATURE 

Angle of attack parameter 

Constant appearing in (9a) 

Approximations in angle of attack parameter expansion (5d) 

Constant appearing in (ga) 

Constant appearing in (13b) 

Constant defined in (22b) 

Blockage ratio 

Reduced span = 6113b, body function 

Constant appearing in (9a) 

Span 

Constant defined in (13c) 

Constant defined after Eq. (2Ob) 

Constant appearing in (9a) 

Drag coefficient 

Wall interference effect on drag coefficient 

Pressure coefficient 

Chord 

Drag force 

Body shape function in (I) 

Green's function 

Function defined in (44) 

Functions appearing in (26a) 

Functions appearing in (30) 
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H 

h 

I n 

I a 

K 

K n 

Ko,K I 

k 

MO,H 1 

Pn(COSm) 

q 

R 

R 

R t 

R 
n 

R~ 

r 

r ~ 

r ~ 

S(x) 

S c 

Se 

S® 

Reduced tunnel radius in C4), and tunnel height defined before (48a) 

Tunnel dimension in units of chord 

Modified Bessel function and designation of integrals in (A5) 

Integral in (A5) 

Transonic s imi lar i ty  parameter in Eq. (4) 

Modified Bessel function 

Dominant two terms in asymptotic expansion for K (5c) 

Fourier transform variable of integration 

Portions o f #  0 solution in (12a) 

Legendre polynomial 

Dynamic pressure 

Reduced polar radius in (8b) 

Scaled polar radius in (8a) 

Reduced polar radius = R/H 

Intermediate variable R/q(H) 

Intermediate variable R/¢(H) 

Function of R in separation of variables solution (A15) 

Cylindrical coordinate 

6r 

F/H 

r/8 

Reduced cross sectional area 

Area in Fig. Al 

Area on shock in Fig. Al 

Area at in f in i t y  in Fig. Al 
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U 

U 

V 1 

X 
Xq" 

x,yjz 

x,y,z 

y,z 

y t ,z t  

X* 

y*, z* 

C& 

B 

B n 

Y 

a(x) 

A 

E n 

~,n,~ 

0 

O' 
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Source strength = S'(x)/2~ 

Function of m in separation of variables solution (AIS) 

Freestream velocity 

cos~ 

Volume of region in Fig. AI 

X/N 

Dimensional Cartesian coordinates 

Nondimensional Cartesian coordinates 

~y, ~z, respectively 

y/H, z/H, respectively 

x/B 

yl~, zl~ or ylB, zlB 

Angle of attack 

Aspect ratio of rectangular tunnel cross section defined in Fig. 5 

~X~ + k  ~ 

Radius of internal cylindrical boundary S in Fig. AI 

Specific heat ratio 

Thickness ratio, characteristic flow deflection 

Delta function 

Laplacian operator 

Gauge function appearing in Wall Layer expansion (10) 

Dummy Cartesian coordinates 

Azimuth angle in spherical coordinates, cylindrical coordinates 

Dummy variable for e 
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K 
n 

~'n 

P 

U n 

'V n 

P 

¢ 

¢n 

¢ 

T n 

Gauge function appearing in angle of attack parameter expansion (5d) 

Eigenvalue appearin9 in (63) and (Bl3) 

H/B in (55) 

Gauge functions appearing in Central Layer expansion (5a) 

Gauge functions appearing in similarity parameter expansion (5c) 

B~ 

Polar angle in" spherical polar coordinates 

Dummy variable fo~ 

Approximations for perturbation potential appearing in Wall Layer 
expansion (I0) and (53a) 

Perturbation potential defined in (48a) 

Perturbation potential approximations in Central Layer representation 
(5a) and (50a) 

Perturbation potential approximations in Axis Layer representation (23a) 

Velocity potential 

Gauge function appearing in (23a) 

Subscripts 

B On body 

Lower surface 

u Upper surface 

Special Symbols 

Overbar ~ Denote Fourier transform Tilde ) 
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